EFISIENSI PSO DALAM PENGOPTIMALAN NEURAL NETWORK UNTUK CKD
Abstract
Full Text:
PDFReferences
A, R., S, S. P., Rangarao, K. V, & Saranya, A. (2019). Efficient datamining model for prediction of chronic kidney disease using wrapper methods. International Journal of Informatics and Communication Technology (IJ-ICT), 8(2), 63. https://doi.org/10.11591/ijict.v8i2.pp63-70
Akben, S. B. (2019). Early Stage Chronic Kidney Disease Diagnosis by Applying Data Mining Methods to Urinalysis, Blood Analysis and Disease History. Irbm, 39(5), 353–358. https://doi.org/10.1016/j.irbm.2018.09.004
Alaiad, A., Najadat, H., Mohsen, B., & Balhaf, K. (2020). Classification and Association Rule Mining Technique for Predicting Chronic Kidney Disease. Journal of Information and Knowledge Management, 19(1). https://doi.org/10.1142/S0219649220400158
Arif-Ul-Islam, & Ripon, S. H. (2019). Rule Induction and Prediction of Chronic Kidney Disease Using Boosting Classifiers, Ant-Miner and J48 Decision Tree. 2nd International Conference on Electrical, Computer and Communication Engineering, ECCE 2019, 1–6. https://doi.org/10.1109/ECACE.2019.8679388
Chittora, P., Chaurasia, S., Chakrabarti, P., Kumawat, G., Chakrabarti, T., Leonowicz, Z., … Bolshev, V. (2021). Prediction of Chronic Kidney Disease - A Machine Learning Perspective. IEEE Access, 9, 17312–17334. https://doi.org/10.1109/ACCESS.2021.3053763
Elhoseny, M., Shankar, K., & Uthayakumar, J. (2019). Intelligent Diagnostic Prediction and Classification System for Chronic Kidney Disease. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-46074-2
Hosseinzadeh, M., Koohpayehzadeh, J., Bali, A. O., Asghari, P., Souri, A., Mazaherinezhad, A., … Rawassizadeh, R. (2021). A diagnostic prediction model for chronic kidney disease in internet of things platform. Multimedia Tools and Applications, 80(11), 16933–16950. https://doi.org/10.1007/s11042-020-09049-4
Nurdin, H., Suhardjono, Wuryanto, A., Yuliandari, D., & Sugiarto, H. (2024). Naive Bayes and Particle Swarm Optimization in Early Detection Of Chronic Kidney Disease. Jurnal Teknik Informatika (JUTIF), 5(3), 703–708. https://doi.org/https://doi.org/10.52436/1.jutif.2024.5.3.1750
Pramanik, R., Khare, S., & Gourisaria, M. K. (2021). Inferring the Occurrence of Chronic Kidney Failure: A Data Mining Solution. Proceedings of Second Doctoral Symposium on Computational Intelligence. https://doi.org/https://doi.org/10.1007/978-981-16-3346-1_59
Purwaningsih, E. (2022). Improving the Performance of Support Vector Machine With Forward Selection for Prediction of Chronic Kidney Disease. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 8(1), 18–24. https://doi.org/10.33480/jitk.v8i1.3327
Qin, J., Chen, L., Liu, Y., Liu, C., Feng, C., & Chen, B. (2020). A machine learning methodology for diagnosing chronic kidney disease. IEEE Access, 8, 20991–21002. https://doi.org/10.1109/ACCESS.2019.2963053
Rady, E. H. A., & Anwar, A. S. (2019). Prediction of kidney disease stages using data mining algorithms. Informatics in Medicine Unlocked, 15(December 2019), 100178. https://doi.org/10.1016/j.imu.2019.100178
Revathy, S., Bharathi, B., Jeyanthi, P., & Ramesh, M. (2019). Chronic kidney disease prediction using machine learning models. International Journal of Engineering and Advanced Technology, 9(1), 6364–6367. https://doi.org/10.35940/ijeat.A2213.109119
Saha, I., Gourisaria, M. K., & Harshvardhan, G. M. (2022). Classification System for Prediction of Chronic Kidney Disease Using Data Mining Techniques. Lecture Notes in Networks and Systems, 318(May 2017), 429–443. https://doi.org/10.1007/978-981-16-5689-7_38
Senan, E. M., Al-Adhaileh, M. H., Alsaade, F. W., Aldhyani, T. H. H., Alqarni, A. A., Alsharif, N., … Alzahrani, M. Y. (2021). Diagnosis of Chronic Kidney Disease Using Effective Classification AlgoSaha, I., Gourisaria, M. K., & Harshvardhan, G. M. (2022). Classification System for Prediction of Chronic Kidney Disease Using Data Mining Techniques. Advances in Data and Information. Journal of Healthcare Engineering, 2021. https://doi.org/10.1155/2021/1004767
Widiati, W., Iriadi, N., Ariyati, I., Nawawi, I., & Sugiono. (2024). Pendekatan Hibrida Decision Tree-Particle Swarm Optimization untuk Deteksi Dini Penyakit Ginjal Kronis. JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika Dan Komputer), 6(1), 11–21. https://doi.org/10.26905/jasiek.v6i1.13006
Widodo, S., Brawijaya, H., & Samudi, S. (2024). Building a Predictive Model for Chronic Kidney Disease: Integrating KNN and PSO. Paradigma - Jurnal Komputer Dan Informatika, 26(1), 58–64. https://doi.org/10.31294/p.v26i1.3282
Wijaya, G. (2024). Improvement of Kernel SVM to Enhance Accuracy in Chronic Kidney Disease. 9(1), 136–144. https://doi.org/https://doi.org/10.33395/sinkron.v9i1.13112 e-ISSN
DOI: http://dx.doi.org/10.36723/juri.v16i2.707
Refbacks
- There are currently no refbacks.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
View My Stats