TINJAUAN SISTEMATIS PERAN JARINGAN SYARAF TIRUAN DAN DEEP LEARNING DALAM DIAGNOSA DEMAM BERDARAH DAN TIFUS
Abstract
Full Text:
PDFReferences
Al Bataineh, A., & Manacek, S. (2022). MLP-PSO Hybrid Algorithm for Heart Disease Prediction. Journal of Personalized Medicine, 12(8). https://doi.org/10.3390/jpm12081208
Ali, R., Hussain, J., & Lee, S. W. (2023). Multilayer perceptron-based self-care early prediction of children with disabilities. Digital Health, 9. https://doi.org/10.1177/20552076231184054
Balamurugan, S. A. alias, Mallick, M. S. M., & Chinthana, G. (2020). Improved prediction of dengue outbreak using combinatorial feature selector and classifier based on entropy weighted score based optimal ranking. Informatics in Medicine Unlocked, 20(July), 100400. https://doi.org/10.1016/j.imu.2020.100400
Banumathy, D., Khalaf, O. I., Romero, C. A. T., Indra, J., & Sharma, D. K. (2022). CAD of BCD from Thermal Mammogram Images Using Machine Learning. Intelligent Automation and Soft Computing, 34(1), 667–685. https://doi.org/10.32604/iasc.2022.025609
Bohm, B. C., Borges, F. E. de M., Silva, S. C. M., Soares, A. T., Ferreira, D. D., Belo, V. S., … Bruhn, F. R. P. (2024). Utilization of machine learning for dengue case screening. BMC Public Health, 24(1), 1–9. https://doi.org/10.1186/s12889-024-19083-8
Carreras, J., Hiraiwa, S., Kikuti, Y. Y., Miyaoka, M., Tomita, S., Ikoma, H., … Nakamura, N. (2021). Artificial neural networks predicted the overall survival and molecular subtypes of diffuse large B-cell lymphoma using a pancancer immune oncology panel. Cancers, 13(24). https://doi.org/10.3390/cancers13246384
Chaw, J. K., Chaw, S. H., Quah, C. H., Sahrani, S., Ang, M. C., Zhao, Y., & Ting, T. T. (2024). A predictive analytics model using machine learning algorithms to estimate the risk of shock development among dengue patients. Healthcare Analytics, 5(November 2023), 100290. https://doi.org/10.1016/j.health.2023.100290
Dimu, N., Rangga, A. A., & Sanga, F. E. O. (2024). Sistem Pakar Diagnosa Penyakit Demam Berdarah Menggunakan Metode Naive Bayes Berbasis Web Puskesmas Waimagura. Jurnal Ilmu Komputer Dan Bisnis, 15(1), 202–211. https://doi.org/10.47927/jikb.v15i1.740
Fahmi Limas, A., Rosnelly, R., & Nursie, A. (2023). A Comparative Analysis on the Evaluation of KNN and SVM Algorithms in the Classification of Diabetes. Scientific Journal of Informatics, 10(3), 251. https://doi.org/10.15294/sji.v10i3.44269
Gupta, G., Khan, S., Guleria, V., Almjally, A., Alabduallah, B. I., Siddiqui, T., … AL-subaie, M. (2023). DDPM: A Dengue Disease Prediction and Diagnosis Model Using Sentiment Analysis and Machine Learning Algorithms. Diagnostics, 13(6). https://doi.org/10.3390/diagnostics13061093
Hamdani, H., Arifin, Z., & Septiarini, A. (2022). Expert System of Dengue Disease Using Artificial Neural Network Classifier. JUITA: Jurnal Informatika, 10(1), 59. https://doi.org/10.30595/juita.v10i1.12476
Joelianto, E., Mandasari, M. I., Marpaung, D. B., Hafizhan, N. D., Heryono, T., Prasetyo, M. E., … Ahmad, I. (2024). Convolutional neural network-based real-time mosquito genus identification using wingbeat frequency: A binary and multiclass classification approach. Ecological Informatics, 80(January), 102495. https://doi.org/10.1016/j.ecoinf.2024.102495
Joo, Y., Namgung, E., Jeong, H., Kang, I., Kim, J., Oh, S., … Hwang, J. (2023). Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms. Scientific Reports, 13(1), 1–15. https://doi.org/10.1038/s41598-023-49514-2
Karolcik, S., Manginas, V., Chanh, H. Q., Daniels, J., Giang, N. T., Huyen, V. N. T., … Georgiou, P. (2024). Towards a machine-learning assisted non-invasive classification of dengue severity using wearable PPG data: a prospective clinical study. EBioMedicine, 104, 105164. https://doi.org/10.1016/j.ebiom.2024.105164
Khan, M. A. R., Akter, J., Ahammad, I., Ejaz, S., & Jaman Khan, T. (2022). Dengue outbreaks prediction in Bangladesh perspective using distinct multilayer perceptron NN and decision tree. Health Information Science and Systems, 10(1), 1–18. https://doi.org/10.1007/s13755-022-00202-x
Likmi, S. (2022). Comparative Analysis of Naive Bayes , K-Nearest Neighbors ( KNN ), and Support Vector Machine ( SVM ) Algorithms for Classification of Heart Disease Patients. JOIN (Jurnal Online Informatika), 7(2), 219–225. https://doi.org/10.15575/join.v7i2.919
LUTFAN ANAS ZAHIR, & SULIANA MAFIROH. (2024). Optimasi Kuat Tekan Beton Dengan Jaringan Syaraf Tiruan Metode Multi Layer Perceptron. Jurnal Daktilitas, 4(01), 45–55. https://doi.org/10.36563/daktilitas.v4i01.1161
Madhavan, M. V., Thanh, D. N. H., Khamparia, A., Pande, S., Malik, R., & Gupta, D. (2021). Recognition and classification of pomegranate leaves diseases by image processing and machine learning techniques. Computers, Materials and Continua, 66(3), 2939–2955. https://doi.org/10.32604/cmc.2021.012466
Mayrose, H., Bairy, G. M., Sampathila, N., Belurkar, S., & Saravu, K. (2023). Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics. Diagnostics, 13(2). https://doi.org/10.3390/diagnostics13020220
Mayrose, H., Sampathila, N., Muralidhar Bairy, G., Nayak, T., Belurkar, S., & Saravu, K. (2023). Deep learning approach for detection of Dengue fever from the microscopic images of blood smear. Journal of Physics: Conference Series, 2571(1). https://doi.org/10.1088/1742-6596/2571/1/012005
Mishra, S., Tripathy, H. K., Mallick, P. K., Bhoi, A. K., & Barsocchi, P. (2020). Eaga-mlp—an enhanced and adaptive hybrid classification model for diabetes diagnosis. Sensors (Switzerland), 20(14), 1–34. https://doi.org/10.3390/s20144036
Mulia, M. R., Kaswar, A. B., Andayani, D. D., Sadri, A., Makassar, U. N., & Korespondensi, P. (2024). Classification of the Nutritional Content of Bananas Based on Texture and Color Features in the Lab and Using Artificial. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 11(3), 507–518. https://doi.org/10.25126/jtiik.2024118332
Mulya, S., Nurcahyo, G. W., & Hendrik, B. (2024). Perbandingan Tingkat Optimalisasi Metode K-Nearest Neighbor Dan Naïve Bayes Dalam Klasifikasi Kelayakan Alat Laboratorium Kimia. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 5(2), 483–495.
Mumtaz, Z., Rashid, Z., Saif, R., & Yousaf, M. Z. (2024). Deep learning guided prediction modeling of dengue virus evolving serotype. Heliyon, 10(11), e32061. https://doi.org/10.1016/j.heliyon.2024.e32061
Paluang, P., Thavorntam, W., & Phairuang, W. (2024). Application of Multilayer Perceptron Artificial Neural Network (MLP-ANN) Algorithm for PM2.5 Mass Concentration Estimation during Open Biomass Burning Episodes in Thailand. International Journal of Geoinformatics, 20(7), 28–42. https://doi.org/10.52939/ijg.v20i7.3401
Phillips, M. T., Meiring, J. E., Voysey, M., Warren, J. L., Baker, S., Basnyat, B., … Pitzer, V. E. (2021). A Bayesian approach for estimating typhoid fever incidence from large-scale facility-based passive surveillance data. Statistics in Medicine, 40(26), 5853–5870. https://doi.org/10.1002/sim.9159
Press, B. (2024). IMPLEMENTASI JARINGAN SYARAF TIRUAN ( JST ) MELALUI IMAGE PROCESSING UNTUK MENDETEKSI KOLESTEROL DARAH DENGAN TEKNIK NON- INVASIVE. Bravo Press.
Putri, A., Hardiana, C. S., Novfuja, E., Try, F., & Siregar, P. (2023). Comparison of K-NN , Naive Bayes and SVM Algorithms for Final-Year Student Graduation Prediction Komparasi Algoritma K-NN , Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir. Indonesian Journal of Machine Learning and Computer Science, 3(April), 20–26.
Rahman, M. S., Pientong, C., Zafar, S., Ekalaksananan, T., Paul, R. E., Haque, U., … Overgaard, H. J. (2021). Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health, 13(December). https://doi.org/10.1016/j.onehlt.2021.100358
Rani, N. S., Chandrajith, M., Pushpa, B. R., & Nair, B. J. B. (2020). A deep convolutional architectural framework for radiograph image processing at bit plane level for gender & age assessment. Computers, Materials and Continua, 62(2), 679–694. https://doi.org/10.32604/cmc.2020.08552
Rita, S. (2022). Prediksi Luas Lahan Sawah Dengan Program Matlab Menggunakan Jaringan Syaraf Tiruan. JRIS : Jurnal Rekayasa Informasi Swadharma, 3(1), 1–7. https://doi.org/10.56486/jris.vol3no1.255
Rohana, T., Nurlaelasari, E., Awal, E. E., & Novita, H. Y. (2024). Kajian Model Jaringan Syaraf Tiruan Untuk Memprediksi Secara Dini Tingkat Kelulusan Mahasiswa. Technologia : Jurnal Ilmiah, 15(4), 629–640.
Rustam, F., Reshi, A. A., Aljedaani, W., Alhossan, A., Ishaq, A., Shafi, S., … Rupapara, V. (2022). Vector mosquito image classification using novel RIFS feature selection and machine learning models for disease epidemiology. Saudi Journal of Biological Sciences, 29(1), 583–594. https://doi.org/10.1016/j.sjbs.2021.09.021
Sebastianelli, A., Spiller, D., Carmo, R., Wheeler, J., Nowakowski, A., Jacobson, L. V., … Schneider, R. (2024). A reproducible ensemble machine learning approach to forecast dengue outbreaks. Scientific Reports, 14(1), 1–17. https://doi.org/10.1038/s41598-024-52796-9
Tunay, M., Pashaei, E., & Pashaei, E. (2022). Hybrid Hypercube Optimization Search Algorithm and Multilayer Perceptron Neural Network for Medical Data Classification. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/1612468
Wahyu Redhani, A., & Hidayat, N. (2021). Implementasi Metode Naïve Bayes untuk Diagnosa Pengidap Demam Berdarah pada Kelurahan Antasan Besar berbasis Web. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(12), 5320–5328. Retrieved from http://j-ptiik.ub.ac.id
Wang, M., Zhang, J., Wang, X., Zhang, B., & Yang, Z. (2023). Source Discrimination of Mine Water by Applying the Multilayer Perceptron Neural Network (MLP) Method—A Case Study in the Pingdingshan Coalfield. Water (Switzerland), 15(19). https://doi.org/10.3390/w15193398
Wu, J. (2021). A Product Styling Design Evaluation Method Based on Multilayer Perceptron Genetic Algorithm Neural Network Algorithm. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/2861292
Zhang, J., Li, C., Yin, Y., Zhang, J., & Grzegorzek, M. (2023). Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. In Artificial Intelligence Review (Vol. 56). https://doi.org/10.1007/s10462-022-10192-7
Zhou, S., Liu, X., Sun, Y., Chang, X., Jia, Y., Guo, J., & Sun, H. (2024). Predicting bathymetry using multisource differential marine geodetic data with multilayer perceptron neural network. International Journal of Digital Earth, 17(1), 1–16. https://doi.org/10.1080/17538947.2024.2393255
DOI: http://dx.doi.org/10.36723/juri.v16i2.719
Refbacks
- There are currently no refbacks.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
View My Stats